HC_AB: A new heuristic clustering algorithm based on Approximate Backbone
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t Clustering is an important research area with numerous applications in pattern recognition, machine learning, and data mining. Since the clustering problem on numeric data sets can be formulated as a typical combinatorial optimization problem, many researches have addressed the design of heuristic algorithms for finding sub-optimal solutions in a reasonable period of time. However, most of the heuristic clustering algorithms suffer from the problem of being sensitive to the initialization and do not guarantee the high quality results. Recently, Approximate Backbone (AB), i.e., the commonly shared intersection of several sub-optimal solutions, has been proposed to address the sensitivity problem of initialization. In this paper, we aim to introduce the AB into heuristic clustering to overcome the initialization sensitivity of conventional heuristic clustering algorithms. The main advantage of the proposed method is the capability of restricting the initial search space around the optimal result by defining the AB, and in turn, reducing the impact of initialization on clustering, eventually improving the performance of heuristic clustering. Experiments on synthetic and real world data sets are performed to validate the effectiveness of the proposed approach in comparison to three conventional heuristic clustering algorithms and three other algorithms with improvement on initialization.
منابع مشابه
CUDAP: A Novel Clustering Algorithm for Uncertain Data Based on Approximate Backbone
Clustering for uncertain data is an interesting research topic in data mining. Researchers prefer to define uncertain data clustering problem by using combinatorial optimization model. Heuristic clustering algorithm is an efficient way to deal with this kind of clustering problem, but initialization sensitivity is one of inevitable drawbacks. In this paper, we propose a novel clustering algorit...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملClustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Lett.
دوره 111 شماره
صفحات -
تاریخ انتشار 2011